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Abstract  

To every partition n = ~ + n2 + " "  + ns one can associate a vertex operator realization of 
the Lie algebras am and gl n. Using this construction we make reductions of the s-component 
KP hierarchy, reductions which are related to these partitions. In this way we obtain matrix KdV 
type equations. Now assuming that (1) r is a r-function of the [nhn2 . . . . .  ns]th reduced KP 
hierarchy and (2) r satisfies a 'natural' string equation, we prove that r also satisfies the vacuum 
constraints of the WI+~ algebra. 
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O. In t roduc t i on  

In recent years KdV type hierarchies have been related to 2D gravity. To be slightly 

more precise (see [Dij] for the details and references), the square root of the partition 

function of the Hermitian (n  - 1 )-matrix model in the continuum limit is the r-function 

of the n-reduced Kadomtsev-Petviashvili  (KP) hierarchy. Hence, the ( n -  1)-matrix 

model corresponds to nth Gelfand-Dickey hierarchy. For n = 2, 3 these hierarchies 

are better known as the KdV and Boussinesque hierarchy, respectively. The partition 

function is then characterized by the so-called string equation: 
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1 3~" 
L-17 = - - - ,  (0.1) 

n aXl 

where L_ 1 is an element of  the c = n Virasoro algebra, which is related to the principal 

realization of the affine lie algebra S/n, or rather gl n. Let ak = --kX-k,  O, a/axk for 
k < 0, k = 0, k > 0, respectively, then 

1 n 2 - 1 

Lt  = ~nn Z :a-eae+nk: + 60k 24n (0.2) 
eEZ 

By making the shift Xn+l "-* Xn+l + n / ( n  + 1 ), we modify the origin of the z-function 
and thus obtain the following form of the string equation: 

L-17" = 0. (0.3) 

Actually, it can be shown [FKN, G] that the above conditions, nth reduced KP and 

Eq. (0.3) (which from now on we will call the string equation), on a r-function of the 

KP hierarchy imply more general constraints, viz. the vacuum constraints of the Wl+o~ 
algebra. This last condition is reduced to the vacuum conditions of the Wn algebra when 

some redundant variables are eliminated. 

The Wl+o¢ algebra is the central extension of the Lie algebra of differential operators 
on C x. This central extension was discovered by Kac and Peterson in 1981 [KP3] 
(see also [Ra, KRa]) .  It has as basis the operators W (e+l) --tk+g(a/at) g, ~ E Z+, k = 
k E Z, together with the central element c. There is a well-known way to express these 

elements in the elements of the Heisenberg algebra, the tek'S. The Wl+oo constraints 
then are 

W~g+I)7" = {W~ g+l) -+-6k,OCt}'r = 0 for g > 0, k >_ -g .  (0.4) 

For the above ~'-function, ~e(1) .^ (2) "k  =--ank and w i = L k -  [ ( n k +  1)/n]Ctnk. 
It is well-known that the n-reduced KP hierarchy is related to the principal realization 

(a vertex realization) of the basic module of sin. However there are many inequivalent 
vertex realizations. Kac and Peterson [KP1] and independently Lepowsky [L] showed 
that for the basic representation of a simply-laced affine Lie algebra these different 

realizations are parametrized by the conjugacy classes of the Weyl group of the corre- 

sponding finite dimensional Lie algebra. Hence, for the case of sin they are parametrized 
by the partitions n = n l  + n2 + . . -  + ns of n. An explicit description of these realizations 
was given in [TV] (see also Section 2). There the construction was given in such a way 
that it was possible to make reductions of the KP-hierarchy. In all these constructions 
a 'natural' Virasoro algebra played an important role. A natural question now is: If  ~" 
is a ~--function of this [n l, n2 . . . . .  ns ] th reduced K.P hierarchy and ~- satisfies the string 
equation (0.3), where L-1 is an element of this new Virasoro algebra, does 7" also 
satisfy some corresponding Wl+o~ constraints? In this paper we give a positive answer 
to this question. As will be shown in Section 6, there exists a 'natural' WI+~ algebra 
for which (0.4) holds. 

This paper is organized as follows. Sections 1-3 give results which were obtained in 
[KV] and [TV] (see also [BT] ). Its major part is an exposition of the s-component KP 
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hierarchy following [KV]. In Section 1, we describe the semi-infinite wedge represen- 
tation of the group G L ~  and the Lie algebras gloo and a ~ .  We define the KP hierarchy 

A 

in the so-called fermionic picture. The loop algebra gl n is introduced in Section 2. We 
obtain it as a subalgebra of aoo. Next we construct to every partition n = nl +n2+.  • .+ns 
of n a vertex operator realization of a ~  and ~n. Section 3 is devoted to the description 
of s-component KP hierarchy in terms of formal pseudo-differential operators. Section 
4 describes reductions of this s-component KP hierarchy related to the above partitions. 
In Section 5 we introduce the string equation and deduce its consequences in terms of 
the pseudo-differential operators. Using the results of Section 5 we deduce in Section 
6 the W1+~ constraints. Section 7 is devoted to a geometric interpretation of the string 
equation on the Sato Grassmannian, which is similar to that of [KS]. 

Notice that, since the Toda lattice hierarchy of [UT] is related to the 2-component 
KP hierarchy, some results of this paper also hold for certain reductions of the Toda 
lattice hierarchy. 

1. The semi-infinite wedge representation of the group GL~ and the KP hierarchy 
in the fermionic picture 

1.1. Consider the infinite complex matrix group 

G L ~  = {A = (a i j ) i , jEZ+l /2  I A is invertible and all but a finite number of 

a;j - ~ j  are 0} 

and its Lie algebra 

gloo = {a = (a( i ) i , jEZ+l /2  I all but a finite number of a/j are 0} 

with bracket [a, b] = ab - ba. This Lie algebra has a basis consisting of matrices 
Eij, i , j  E Z + ½, where Eij is the matrix with a 1 on the ( i , j ) th  entry and zeros 

elsewhere. Now g l ~  is a subalgebra of the bigger Lie algebra 

gloo = {a = (a i j ) i , jEg+l /2  [ aij  = 0 if li - j[ >> 0}. 

This Lie algebra gloo has a universal central extension aoo := gloo ~ )  Cc with Lie bracket 

defined by 

[a + ac,  b + tic] = ab - ba + / z ( a ,  b)c ,  ( 1.1.1 ) 

for a, b E gloo and a,  fl E C; here/z  is the following 2-cocycle: 

tz( Eij, Ekl) = ¢~itSjk( O( i) -- tg(j) ), ( 1.1.2) 

where 0 : R ~ C is defined by 

{ ~  i f i > 0 ,  
O(i) := (1.1.3) 

i f i < 0 .  
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Let C a = ~)jeZ+l/2 C v j  be an infinite dimensional complex vector space with fixed 
basis {v j } j e z+U2 .  Both the group G L ~  and the Lie algebras g l ~  and a m  act linearly 
on C ~ via the usual formula: 

Ei j (  vk ) = , jkvi. 

We introduce, following [KP2], the corresponding semi-infinite wedge space F = 

A½°°C°°, this is the vector space with a basis consisting of all semi-infinite mono- 

minis of the form vit A vi2 A vi3 • • ", where il > i2 > i3 > • ..  and ie+l = ie - 1 for e >> 0. 
We can now define representations R of GLoo on F by 

R ( A ) ( Uil A Ui2 A Ui3 A " " ") "~ Avil A Avi2 A Aoi3 A . . . .  (1.1.4) 

In order to describe representations of the Lie algebras we find it convenient to define 
wedging and contracting operators ~bj- and ~O + ( j  C Z + ½) on F by 

~[If- (Uil  A Ui2 A " " ") 

f 0  if - j = i s f o r s o m e s  

[ ( -1 )Sv i~  A vi2 • "" A vi, A v _ j  A vis÷~ A --.  if is > - - j  > is+l 

I/If  r ( Uil A ui2 A . . . ) 

= f 0  i f j  4: i s f o r a l l s  

[ ( - -1)s+lv i !  Avi2 A " " A U i s _  t AVi~+l A "'" i f j  =is .  

Notice that the definition of ~pj:t= differs from the one in [KV]. The reason for this will 

become clear in Section 7, where we describe the connection with the Sato Grassman- 
nian. These wedging and contracting operators satisfy the following relations (i, j E 
z+½,a,u=+,-): 

I/1~ ~1~ -~ ~ l ~  ( l l /  = ¢~ l , _  iz~i,  _ j , (1.1.5) 

hence they generate a Clifford algebra, which we denote by Cg. 
Introduce the following elements of F (m E Z):  

]m) = urn_l~ 2 A urn_3~ 2 A Um_5/2 A " " . 

It is clear that F is an irreducible Cg-module such that 

~/,~ 10) = 0 for j > 0. (1.1.6) 

We are now able to define representations r, P of  gloo, aoo on F by 

r ( E i j )  = d/-i~h ; ,  f ( E i j )  = : O - i O ; : ,  f ( c )  = I, 

where : : stands for the normal  ordered produc t  defined in the usual way ()t,/z = + or 
- ) :  



J. van de Leur /Journal of Geometry and Physics 17 (1995) 95-124 99 

. a ~,. OkO~ i f g > _ k  
• ¢t~0~ • -- ~, a (1.1.7) 

- ¢~  ~Pk i f g  < k. 

1.2. Define the charge decomposition 

F = ~ F  ~m) (1.2.1) 
mEZ 

by letting 

charge(}0)) = 0 and c h a r g e 0 p f )  = +1.  (1.2.2) 

It is easy to see that each F ~m) is irreducible with respect to ggoo, aoo (and GLow). 

Note that [m) is its highest weight vector, i.e., ~(Eij) = r(Eij)  - ~o0(i)  and 

r ( E i j ) l m ) = O  for i < j, 

r(Eii)[m) =O ( = [m)) i f i > m  ( i < m ) .  

Let 0 = R ( G L ~ ) 1 0 )  C F ~°) be the GLoo-orbit of  the vacuum vector 10), then one has 

Proposition 1.1 ( [KP2] ). A non-zero element ~" of  F ~°) lies in 0 i f  and only if  the 
following equation holds in F ® F: 

Z ~-7" ® ~-kT" = 0. (1.2.3) 
kEZ+I/2 

Proof For a proof  see [KP2] or [KR].  [] 

Eq. (1.2.3) is called the KP hierarchy in the fermionic picture. 

2. The loop algebra ~ n ,  partitions of n and vertex operator constructions 

2.1. Let gl n = gln (C [ t, t -  l ] ) be the loop algebra associated to gin (C) .  This algebra 
has a natural representation on the vector space (C[ t ,  t -1 ] )n. Let {wi} be the standard 
basis of  C ~. By identifying (C[ t ,  t - I ] )  n over C with C ~ via v~+j-1/2 = t - kwj  we 

obtain an embedding ~b : gl n ---+ gl~:  

~b( tk eij) = Z En(g-k)+i-1/2"ng+j-l/2' 
gEZ 

where e 0 is a basis of  g ln(C) .  
A straightforward calculation shows that the restriction of  the cocycle /z to ~b(gl n) 

induces the following 2-cocycle on ~n: 



100 J. van de Leur/Journal of Geometry and Physics 17 (1995) 95-124 

Here and further Rest=0 dt)-~y f i t  j stands for f -1 .  This gives a central extension ~n = 

~n (~  CK, where the bracket is defined by 

[t~x + aK ,  troy + i lK]  = t~+m(xy - y x )  + ~8~,_mtr(xy)K.  

In this way we have an embedding ~b : ~n ~ aoo, where ~b(K) = c. 
Since F is a module for aoo, it is clear that with this embedding we also have a 

representation of ~n on this semi-infinite wedge space. It is well-known that the level 
one representations of the affine Kac-Moody algebra ~n have a lot of inequivalent 
realizations. To be more precise, Kac and Peterson [KP1] and independently Lepowsky 
[L] showed that to every conjugacy class of the Weyl group of g/n(C) or rather S/n(C) 
there exists an inequivalent vertex operator realization of the same level one module. 
Hence to every partition of n, there exists such a construction. 

We will now sketch how one can construct these vertex realizations of ~n, following 
[TV]. From now on let n = nl + n2 + . . .  + ns be a partition of n into s parts, 
and denote by Na = nl + n2 + . . .  + na - l .  We begin by relabeling the basis vectors 
vj and with them the corresponding fermionic (wedging and contracting) operators: 
( l < a < s ,  l <_p<_na ,  j E Z )  

v (a) naj--p+l/2 = Vnj-Na--P+I/2 ' 

+(a) = ~4- 
~nojTp+l/2 nj~=N,~p±l/2" (2.1.1) 

Notice that with this relabeling we have: ~b~. (°) ]0) = 0 for k > 0. We also rewrite the 

Eij '  s: 

E(ab) 1 2 Enj--No--P+l/2,nk--Nb--q+l/2" naj--p+l/2,nbk--q+ / ~- 

The corresponding Lie bracket on aoo is given by 

I-K'(ab) E'(cd)] =Sbc~kl  K'(ad)~jrn ~ ~ L,(db) -- OadOjmr.~k + 8adSbcSjmt~ke( O ( j )  -- O( k ) ) c ,  t ~ jk  '~era J 

^/  r~(ab) .d - (a)  d,+b. and r t  c, jk ) = . w - j  Wk " 
Introduce the fermionic fields (z E C x ): 

~//-t-(a) (Z) def ~ ~k~(a)z  - k - l / 2  . (2.1.2) 

kEZ+ 1/2 

Let N be the least common multiple of nl, n2 . . . . .  ns. It was shown in [TV] that the 
modes of the fields 

:~b+(a) ( wp zN/n~ ) ~ - ~  b) ( toq zS/~b ) : , (2.1.3) 

for 1 < a, b <_ s, 1 < p < no, 1 <_ q <_ rib, where tOa = e 2~ri/n', together with the identity, 
generate a representation of ~n with K = 1. 

Next we introduce special bosonic fields (1 < a < s): 

~-~  ol~a) z--k--I de.~f:l~+(a) ( z )llY-(a) ( z ): . (2.1.4) ol(a) ( z ) 
kEZ 
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The operators ot~ a) satisfy the canonical commutation relation of the associative oscillator 
algebra, which we denote by a: 

[a~ i), ~ J ) ]  = kS/j~k,-~, (2 .1 .5 )  

and one has 

o~i)lm ) = 0  for k > 0. (2.1.6) 

It is easy to see that restricted to ~n, F<°) is its basic highest weight representation (see 
[K, Ch. 12]). 

In order to express the fermionic fields ~b+<i)(z) in terms of the bosonic fields 
a (i) (z ) ,  we need some additional operators Qi, i = 1 . . . . .  s, on F. These operators are 
uniquely defined by the following conditions: 

ailo) = ~b+l~)210), Qi~kk ~(j) = ( l ~siJ+t't"+(J) ~ (2.1.7) -- • 1 Wk:q:Sq ~,~i. 

They satisfy the following commutation relations: 

QiQj = - Q j Q i  i f / ~  j, [a~i),Qj] =SijSkoQj. (2.1.8) 

Theorem 2.1 ( [DJKM1, JM] ). 

O±(i)(z)=Q~tz4-~g'exp T -£otkl (i)z-k exp T ,. ] . (2.1.9) 

Proof. See [TV]. 

The operators on the right-hand side of (2.1.9) are called vertex operators. They 
made their first appearance in string theory (cf. [FK] ). 

If one substitutes (2.1.9) into (2.1.3), one obtains the vertex operator realization of 
~n, which is related to the partition n = nl + n2 + . . .  + ns (see [TV] for more details). 

2.2. The realiZation of ~n, described in the previous section, has a natural Virasoro 
algebra. In [TV], it was shown that the following two sets of operators have the same 
action on F: 

1 
Lk = 7n/" -J J+"'~" k 0 ~  , (2 .2 .1 )  

i=l 

Hk = + ~ "'l'+(i)'t'-(i) " + • (2.2.2) 
• W - j  Wj+nik" t~kO I j4n i 

i=l I,j~Z+I/2 

So Lk = Hk, 

[Zk,~.lfl=(i)] ( j . . ~ _ k ) - t - ( i )  = - ~j+~,~ (2.2.3) 



102  

a n d  

J. van de Leur/Journal of  Geometry and Physics 17 (1995) 95-124 

k 3 - k 
[ Lk, Le] = ( k - e)  Lk+e -4- t ~ k , - ~ - - " i ' ~ n .  

2.3. We will now use the results of Section 2.1 to describe the s-component boson- 
fermion correspondence. Let C[x]  be the space of polynomials in indeterminates x = 
{x~i)}, k = 1,2 . . . . .  i = 1,2 . . . . .  s. Let L be a lattice with a basis 81 . . . . .  8s over Z 

and the symmetric bilinear form (8it8j) = ~i j ,  where ~i j  is the Kronecker symbol. Let 

- 1  i f i > j  (2.3.1) 
eij = 1 if i < j .  

Define a bimultiplicative function e : L × L ~ {+1} by letting 

e (  t~i, t~j ) = ei j .  (2.3.2) 

Let 8 = 8 1  + "  "+Ss,  a = {7 E L I (81r) =0} ,  a = {~,j : = S i - S j  l i, j = 1 . . . . .  s, i # 
j}. Of course Q is the root lattice of Ms(C),  the set A being the root system. 

Consider the vector space C[L]  with basis e r, 7 E L, and the following twisted group 

algebra product: 

e'~ e/3 = e( a,  f l ) e  ~+~. (2.3.3) 

Let B = C[x]  ®c C[L]  be the tensor product of algebras. Then the s-component 
boson-fermion correspondence is the vector space isomorphism 

tr : F _Z~ B, (2.3.4) 

given by 

O . ( O f ( i t )  . o~(i ,)  /~k l  ks . . m a,( i l )  • X ( i ' )  ® e klSl+'''+k'8". (2.3.5) 
, - m , "  " - r a , ~ l  . . . a s  10))=ml" ".s~m, "" m, 

The transported charge then will be as follows: 

charge(p(x)  ® e r)  = (817). (2.3.6) 

We denote the transported charge decomposition by 

B = ~ B (m) . 

mEZ 

The transported action of 

o'a(J~o "-1 ( p ( x )  ® e ~) 

o ' a ~ ) o ' - l ( p ( x )  ® e r)  

tra(oJ) o ' - l ( p ( x )  ® e r)  

o ' Q j t r - l ( p ( x )  ® e r)  

For notational convenience, 

the operators a(~ ) and Qj looks as follows: 

= m x ~ ) p ( x )  ® e ~, if m > 0, 

= a p ( x ) / a x ~  ) ® e  r, if m > 0 ,  

= ( S j l T ) p ( x )  ® e ~, 

= ¢ ( S j , , / ) p ( x )  ® e r+Sj. (2.3.7) 

we introduce 8j = orot(0J)o "-1. Notice that e 8j = trQjo --l .  
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2.4. Using the isomorphism tr we can reformulate the KP hierarchy (1.2.3) in the 
bosonic picture. We start by observing that (1.2.3) can be rewritten as follows: 

l± ) Resz=0dz O + ( J ) ( z ) r ® O - ( J ) ( z ) r  =0 ,  r E F  (°). (2.4.1) 
\ j=l 

Notice that for r E F (°), o-(r)  = ~-~,eQ zr(x)er"  Here and further we write r r ( x ) e r  for 

r r ( x )  ®e  r. Using Theorem 2.1, Eq. (2.4.1) turns under o-Go- : F ® F  ~ ,  C[x ' , x " ]  ® 
(C [L ' ]  ® C [ L " ] )  into the following set of equations: for all a, fl E L such that 

(alS) = - ( i l l S )  = 1 we have 

(, 
Resz=o dz E ~ ( 8 . i , a  - B)z (Sjl'~-~-28j) 

j=l 

x exp (x~j) . . . .  a a - x~  J) )z  k exp - 
\ axp )'' 

x ~-,~_~; (x ')  (e'~)q'a+8](x " )  (ea)"~ = O. (2.4.2) 
/ 

3. The algebra of formal pseudo-differential operators and the s-component KP 
hierarchy as a dynamical system 

3.0. The KP hierarchy and its s-component generalizations admit several formulations. 

The one we will give here was introduced by Sato [S]; it is given in the language of 

formal pseudo-differential operators. We will show that this formulation follows from 

the r-function formulation given by Eq. (2.4.2). 

3.1. We shall work over the algebra .,4 of formal power series over C in indeterminates 
x = (x~))), where k = 1,2, . . . . . . .  and j = 1, . ,s .  The indeterminates x l t ) , .  ,x(S)l will 

be viewed as variables and x~ j) with k >_ 2 as parameters. Let 

a a 

a = axl ----7 + + 

A formal s x s matrix pseudo-differential operator is an expression of the form 

P ( x , a  ) = ~--~ P j ( x ) a  j,  (3.1.1) 
j<N 

where Pj are s x s matrices over ,4. Let ~ denote the vector space over C of all 

expressions (3.1.1). We have a linear isomorphism S : ~" ---, Mats ( ,A((z ) ) )  given by 
S ( P ( x , a ) )  = P ( x , z ) .  The matrix series P ( x , z )  in indeterminates x and z is called 

the symbol of P (x, a ) .  
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Now we may define a product o on gt making it an associative algebra: 

oo 1 an.~znP) anS(Q)  
S ( P  o Q )  = ~_, n[ 

n=O 

(3.1.2) 

From now on, we shall drop the multiplication sign o when no ambiguity may arise. 

One defines the differential part of P ( x , a )  by P + ( x , a )  = ~,7=oPj(x)a j, and let 
P_ = P - P+. We have the corresponding vector space decomposition: 

9,  = gt_  @ g,+ .  (3 .1 .3 )  

One defines a linear map * : ~ ~ ~ by the following formula: 

Pja j = ~ _ d ( - - 0 )  j o tpj. (3.1.4) 

J 

Here and further tp  stands for the transpose of the matrix P. Note that • is an anti- 

involution of  the algebra g'. 

3.2. Introduce the following notation: 

o o  

Z X (s) z . x(J) = ~-~ x~J) z k, eZX = diag( e z'x(" . . . . .  e ). 
k=-I 

The algebra g: acts on the space U+ (U_)  of formal oscillating matrix functions of the 

form 

~_,PjzJeZ. "x ( ~ _ , P j z J e - Z ' X )  , where P iG Mats(A), 
j < N  ~,j<N / 

in the obvious way: 

P ( x ) a J e  ±z'x = P ( x )  ( ± z ) J e  ±z'x.  

One has the following fundamental lemma (see [KV] ). 

L e m m a  3.1. I f  P,, Q E ~ are such that 

Res z=o(P(x ,a ) e  z'x) t (Q(x ' , a ' ) e -Z 'X ' )  dz = O, (3.2.1) 

then ( P  o Q * ) _  = O. 

3.3. We proceed now by rewriting the formulation (2.4.2) of the s-component KP 
hierarchy in terms of formal pseudo-differential operators. 

For each ot E supp r := {a E Q I r = ~ , ~ Q  ¢,e  '~,*'~ • 0} we define the (matrix 
valued) functions 

V+ ( a , x ,  z ) = (Vi~ ( ot, x, z ) )isj=l (3.3.1) 
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as follows: 

~]z (t~, X, Z ) def ~(Sj ,  Ot "q.- t~i)Z (Syl+a+Si-rSj) (1"a(X)) -1 

×exp  -4- x~J)z k exp q: Ox~J) z 7",~+(8,-sj)(x). (3.3.2) 

It is easy to see that Eq. (2.4.2) is equivalent to the following bilinear identity: 

Resz=o V+ ( a , x , z )  t v - ( f l ,  xl, z) dz = 0  for all a, fl E Q. (3.3.3) 

Define s × s matrices W +(m) (a ,  x) by the following generating series (cf. (3.3.2)): 

~-~ Wi~(m) ( ot, X) ( '~Z ) -m 

m=O 

= ejiz 8'j-I (~'~(x)) -I  exp :F Ox~J ) 
z k) 

k ~"~+'~'J (x ) ) .  (3.3.4) 

We see from (3.3.2) that V + ( a , x , z )  can be written in the following form: 

V + ( a , x , z )  = w + ( m ) ( ~ , x ) R ± ( a , + z ) ( + z )  -m e +z'x, (3.3.5) 

where 

R ± (a,  z ) -- ~ e(Si, a)Ei i (+z ) +(8,1~,). (3.3.6) 
i=l 

Here and further Eij stands for the s x s matrix whose (i ,])  entry is 1 and all other 
entries are zero. Now it is clear that V + (a,  x, z) can be written in terms of formal 

pseudo-differential operators 

P+( ot) -- P+ ( oz, x, O) = Is + ~_, W+(m) ( a,x)O -m , 
m=l 

R+(ot) = R4-(a,O) (3.3.7) 

as follows: 

V+(ot, x , z )  = p + ( a ) R + ( a ) e  +z'x. (3.3.8) 

Since obviously R - ( a , a )  - I  = R+(ot, a)  *, using Lemma 3.1 we deduce from the 

bilinear identity (3.3.3): 

P -  (or) = ( P + ( a ) * )  - l ,  (3.3.9) 

( p + ( o t ) R + ( a  _ f l ) p + ( f l ) - l ) _  =0 for all a, fl E supp ~-. (3.3.10) 
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Victor Kac and the author showed in [KV] that given 13 E supp 7., all the pseudo- 
differential operators P+(ot) ,  ot C supp ~-, are completely determined by P+(13) from 
Eqs. (3.3.10). They also showed that P = P + ( a )  satisfies the Sato equation: 

aP 
ax~j ) -- - ( P E j j  o c~ k o p - l ) _  o e. (3.3.11 ) 

To be more precise, one has the following 

Proposition 3.2. Consider the formal oscillating functions V + (or, x, z ), V -  ( a, x, z ), 
a E Q, of  the form (3.3.8), where R ± ( a , z )  are given by (3.3.6) and P±(ot ,  x , a )  E 
Is + 9"_. Then the bilinear identity (3.3.3)for all a,  fl E supp 7" is equivalent to the Sato 
equation (3.3.11)for each P = P+ ( ot) and the matching conditions (3.3.9), (3.3.10)for 

all or, fl E supp 7". 

3.4. 

C 0) (ct), and differential operators B~m j) (a) :  

L =- L(ot) = P+(ot) o a  o P + ( a )  - 1  , 

CO) - CO) ( ot) = P+ ( a )E j jP+  ( a)  -1,  

B(m j)  - B(mJ)(a) = ( P + ( a ) E j j  003 m 0 P + ( o l ) - l ) + .  

Then 

Fix cr E Q, introduce the following formal pseudo-differential operators L ( a ) ,  

(3.4.1) 

i-- 1 , 2 , . . . , s ,  (3.4.2) 

oo 

L= Isa + E U(j) (x )a - J '  
j = l  

C (i) = Eii + E c ( i ' J )  (X)tg--J' 
j = l  

subject to the conditions 

s 

E C i) = Is, c ( i ) L  = LC (i), 
i=l 

C(i)C O) = BijC (i). (3.4.3) 

They satisfy the following set of equations for some P E Is + gt_: 

L P = P 3 ,  

C (i) P = PEii, 

aP/aX(k i) = - (  L U)k)_e, where L (i) = c(i)  L. (3.4.4) 

Proposition 3.3. The system of  equations (3.4.4) has a solution P E Is + jr_ i f  and 
only i f  we can f ind a formal oscillating function of  the form 

W ( x , z )  = Is + E w ( J ) ( x ) z - J  e z'x (3.4.5) 
j=l 
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that satisfies the linear equations 

L W  = zW, C ( i ) w  = WEii, OW = n~i)W. ( 3 . 4 . 6 )  
cgx~ i) 

And finally, one has the following 

Proposit ion 3.4. I f  for  every a C Q the formal pseudo-differential operators L ==_ L( a)  
and C (j) - C C j) ( a )  of  the form (3.4.2) satisfy conditions (3.4.3) and i f  Eqs. (3.4.4) 

have a solution P -- P(ot)  E Is + qt_, then the differential operators B~ j) =_ B~ j) (a )  

satisfy one of  the following equivalent conditions: 

aL 

Ox~ j) 

OL (i) 

Ox~ j) 

OB~ i) 

OX~ j) 

3C (i) 
- [B~J),L],  - [B~J),c~i)], (3.4.7) 

OX~ j) 

- [B~ j),  L(i)],  (3.4.8) 

OB~J) r l~(J) lt/(i) 1 
Cgx~i) -- tUk ,L.g j .  

Here L ~j) =_ L(J) (a)  = c ( J ) ( a )  o L ( a ) .  

(3.4.9) 

Eqs. (3.4.7) and (3.4.8) are called Lax type equations. Eqs. (3.4.9) are called the 
Zakharov-Shabat type equations. The latter are the compatibility conditions for the 
linear problem (3.4.6). 

4. [n l ,  n2, • • • ,  ns]-reductions o f  the s -component  KP hierarchy 

4.1. Using (2.1.9), (2.1.3), (2.3.5) and (2.3.7), we obtain the vertex operator realiza- 
A 

tion of gl n in the vector space B (m) that is related to the partition n = nl + n2 + .  • • + ns. 
Now, restricted to sln, the representation in F ~m) is not irreducible anymore, since s"ln 
commutes with the operators 

t~(s) (i) k G Z. (4.1.1) 
t " k n s  m Olkn i , 

In order to describe the irreducible part of the representation of ~n in B t°) containing 
the vacuum vector 1, we choose the complementary generators of the oscillator algebra 

u contained in ~n (k E Z): 

f l ( j )  N . . .  ~ ( j + l )  , (l)  _(2) _ ,~(j) 
k -~ J5-1 gnj+| - -  nj+l £OQn t -}- Oten 2 @ " • • ~ ~ n j  ) 

~/Uj+l  (Nj+l -- nj+l) 

if k q~ njZ, 

if k = g n j  and 1 < j < s, 

(4.1.2) 
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so that the operators (4.1.1) and (4.1.2) also satisfy relations (2.1.5). Hence, introduc- 
ing the new indeterminates 

/ X~k j) if k ~ njN, 

Nj+Ix(J+ 1) l -  _(1) (2) (j) 
y~j) tnj+~ -- k tq '~n ,  q- n2xe,2 q- "'" q- njX~nj ) i f  k = en/ and 1 < j < s, 

= ~/Nj+I  ( N j + I  - n j + l )  

_ _(1)  + _  . . (2) (s) 
Ul.~e, ' n2.~gn2 + • • • + nsXt,, if k = gns and j = s, 

(4.1.3) 

we have C[x]  = C[y]  and 

(j) . (j) 
tr(fl~ j)) = 3/3Y k and t r ( f l _ k  ) = ry k if k > 0. (4.1.4) 

Now it is clear that the subspace of B (°) irreducible with respect to ~n and containing 
the vacuum 1 is the vector space 

B[°~,n2,...,,,] =C[Y (j) I l _ < j < s ,  k61%1, o r j = s ,  k E N \ n s Z ] ® C [ Q ] .  (4.1.5) 

The vertex operator realization of s/n in the vector space B (°) is then obtained by [nl,n2,...,n,] 
expressing the fields (2.1.3) in terms of vertex operators (2.1.9), which are expressed 
via (4.1.2) in the operators (4.1.4), the operators eSi-sJ and 8i - 8j (1 < i < j < s) 
(see [TV] for details). 

The s-component KP hierarchy of Eqs. (2.4.2) on ~- 6 B (°) -- C[y]  ® C[Q] when 
restricted to 7- 6 Bl°?,n2,...,,s]._ is called the [nl,n2 . . . . .  n;]th reduced KP hierarchy. It is 
obtained from the s-component KP hierarchy by making the change of variables (4.1.3) 
and putting zero all terms containing partial derivatives by .rn,"(s) , -r2ns"(s), Y3n,(S), . . . .  

The totality of solutions of the [nl,n2 . . . . .  n;]th reduced KP hierarchy is given by 
the following 

Proposition 4.1. Let Ot,,,,2,....n,] be the orbit of 1 under the (projective) representa- 
tion of the loop group SL,( C[ t , t - l  ] ) corresponding to the representation of ~1, in 
B (°) Then [ nl ,n2,...,ns ]" 

Otn,,n2,...,n,] = or(O) f-] B (°) ["l,n2,...,n,l" 

In other words, the r-functions of the [nl,n2 . . . . .  ns]th reduced KP hierarchy are 
precisely the z-functions of the KP hierarchy in the variables y~J), which are independent 
of the variables Yen," (s), g 6 N. 

Proof. The same as the proof of a similar statement in [KP2]. [] 

4.2. It is clear from the definitions and results of Section 4.1 that the condition on the 
s-component KP hierarchy to be [ nl, n2 . . . . .  ns ] th reduced is equivalent to 
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s 
0¢ 

Z a , . O )  - 0 ,  f o r a l l k E N  (4.2.1) 
j=l  V~'kn) 

Using the Sato equation (3.3.11 ), this implies the following two equivalent conditions: 

~ aw(a) 
- w ( a )  zk"~Ejj, 

j= l O'~" k n j "= 
(4.2.2) 

(4.2.3) 

5. The string equation 

5.1. From now on we assume that r is any solution o f  the KP hierarchy. In particular, 
we no longer assume that ¢,~ is a polynomial. For instance, the soliton and dromion 
solutions of [ KV, §5] are allowed. Of course this means that the corresponding wave 
functions V + ( a ,  z ) will be of a more general nature than before. 

Recall from Section 3 the wave function V ( a , z )  =- V + ( a , z )  = P ( a ) R ( o t ) e  z'x = 

P + ( a ) R + ( a ) e  z'x. It is natural to compute 

a V ( a , z )  a 
_ _  _ p ( a ) R ( o t ) e  z'x 

cgz Oz 

= P ( a ) R ( a )  a---e~X 
Oz 

= P ( a ) R ( a )  Z k x ~ a ) o k - l E a a R ( ° t ) - l P ( ° t ) - l V ( a '  Z).  
a=l k=-I 

Define 

M(ct)  := P ( a ) R ( a )  Z k x ~ a ) o k - l E a a R ( a ) - l P ( ° t ) - l ;  

a=l k=-I 

then one easily checks that [ L ( a ) ,  M ( a ) ]  = 1 and 

L(al"C(")(a),M(a) ~lL(al~-"°c(a)(a) = 1. ~ na 
a=l 

Next, we calculate the ( i , j ) th  coefficient of 

( M(Ot)~- '~LL(Ot) l -naC(a)(Ol))a=l  na _ P ( a ) R ( o t ) .  

(5.1.1) 

(5.1.2) 

Let P = S ( P ( ot ) ) and R = S ( R ( a ) ) ;  then 
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Ij 

= ( S  ( (P(o l )R(o l )  S~=l ~ l k x ( k a ) t ~ k - n a E a a e ( ° l ) - l e ( ° l ) - l ) _ P ( ° l ) R ( ° l ) ) ) . .  

tj 

= ( O P R ~ L E a a z l - n a + ~ - ~ l ~ k x : a ) P R E a a Z k - n " - x ( a ) E a a P R  
•Z ~ na a=l k k=l 

na Xk+n° OX~ a'-'--'~) 
k=l /j 

Define 

~+8~-8j  = exp - Ox(kJ) r~+8,-Sj ( x )  
~-1 

= ra÷8,-e~( . . . .  x~ b) - ,~j~/kz k . . . .  ) ;  

then 

( PR)ij = e( Sjlot + 8,)Z 8u-l+(Sjla) ra+Si-Sj 
7" a 

and hence 

u 

- - -  Z - k - ' j  + (Sij  - 1 + ( S j l a ) ) Z  -~j ~,~+8,-~j 
nj 7"a k=- 1 

nj  

+ ~ kx~J ~ ~',,+8,-8j Zk_.~ _ n 'x  ") ~+8,-ej 
7. a J ni "l'a 

k=l 

_ n , ; a ,  0 nj ~"~(k + a,, k+no .~..(a) ZSiJ-l+(SJla)" 
a=l na k=l t"~k \ "l'a / 

(5.1.3) 

5 . 2 .  We introduce the natural generalization of the string Eq. (0.3).  Let L-1 be given 
by (2.2.1); the string equation is the following constraint on r E F¢°): 

L-l~" = 0. (5.2.1) 

Using (2.3.7) we rewrite L- l  in terms of operators on B¢°): 
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_ ~  [ ' -  (a) 1 n,,-I 
t _ , -  a=l ~0"aXn° "~ ~na ~ p(na -- P)x(/'x(a)--P 

} ..{_ __ ~--~. ( k W na ) X ~ +),, c~ 
"o ~ ax~ °) 

Since r = )--]~Q ~-~e '~ and L-I~" = 0, we find that for all a E Q: 

n a -  1 
1 

p)Xp .Xna_ p (6alVt)x(na) + ~na Z p(na -- (a) ~(a) 
a=l p=l 

1 oo ,, ~a-(a) L } 
"}---E(k"l-"aJ'~'k+n.~ (a) 7"a = 0" 

na k=l OXk 

Clearly, also L-1~,,+~,-8, = 0; this gives (see e.g. [D] ): 

a=l 

na -- 1 

1 Z p ( n a _ p ) ( x ( a )  t~aJ)(x(a) - t~aJ ) 
"q- ~na p=l pz p (nj p)znJ -p ~k na--p 

1 °0 i/ (a) t~aj ~ t~a ~ 
+ - - ~ ( k + n . )  ~,xk+.o (k+nj)z~+",/ ~ ~,+8,-8j =0.  

rla k=l 

111 

(5.2.2) 

(5.2.3) 

So, in a similar way as in [D],  one deduces from (5.2.2) and (5.2.3) that 

~a+,~,_Sja2L-i 'r ,~ - 7"~l L_l~',~+~,_Sj = O. 

Hence, we find that for all a E Q and 1 _< i, j _< s: 

1 kx(J) ,k-nj n"-~j -~ z-k-nJ + L.., k " 
k=l k=-I 

+ (8,j - 1 + (Sjl,~) + ½ - ½no)z-"~ - njx~i ))  ~+8,- , ,  

_~__~__OOnj . ( a )  cg (~'a+6i-8))}=O. 
Z(k"l-na)Xk+n"ax~a) \ Ta / 

a=l na k=-I 
(5.2.4) 

Comparing this with (5.1.3), one finds 
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S ((a=~l ( (~aM(°l)g(° l ) l -nac(a)(° f ) )  

. ))  2na 1L(a)_n.c(a)(a)  } P(ot)R(a) = O. 
ij 

We thus conclude that the string equation induces for all ot E Q: 

a = l  

So, if (5.2.5) holds 

N(te) := £ { 1 M ( a ) L ( a ) l - n ° c ( a ) ( o t )  
na 

a = l  

n a - -  1 

2n----~ L(ot) - ' C  (a) ( a )  } = O. 

na -- 1 L(a)_n.c(a)(a)  l 
f 2na 

is a differential operator that satisfies 

(5.2.5) 

6. Wl+oo constraints 

6.1. Let el, 1 < i < s be a basis of  C s. In a similar way as in Section 2, we identify 
( C [ t , t - l ] ) s  with C ~ ,  viz., we put 

v(_a)k_l/2 = t~ ea. (6.1.1) 

We can associate to (C[ t ,  t -1 ] )s s-copies of the Lie algebra of differential operators 
on C×; it has as basis the operators (see [Ra] or [KRa]) :  

--tk+e(O/3t)teii, f o r k E Z ,  g E Z + ,  1 < i < s .  

We will denote this Lie algebra by D s. Via (6.1.1) we can embed this algebra into gloo 
and also into aoo; one finds 

--tk+e(d/Ot)%ii H ~_, --m(m -- 1 ) - ' - ( m  -- g + 1)E(i_i)m_t_l/2._m_U 2. (6.1.2) 
mEZ 

It is straightforward, but rather tedious, to calculate the corresponding 2-cocycle; the 
result is as follows (see also [Ra] or [KRa]) .  Let f ( t ) , g ( t )  E C [ t , t - I ] ;  then 

ix( f ( t )  (0/0t) eeaa, g(t) (O/at) mebb) 
g!m! 

= 6ab (g + m + 1)! Rest=o dtf(m+l)(t)g(O(t).  

Hence in this way we get a central extension/)s = D ~ ~ Cc of D s with Lie bracket 
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[ f ( t )  (a/at)eea~ + ac,  g( t )  (a/at)  mebb + Be] 

= 6ab { ( f ( t )  (a/at)  eg(t) (a/at)  m _ g( t )  (a/at)  m f ( t )  (a/at)e) eaa 

g!m! } 
+ (g + m + 1)! Rest=o dt f (m+l)( t )g(e)( t )c  . 

Since we have the representation P of aoo, we find that 

.,t,+(a) , t ,-(a) . ?(--tk+e(a/at)ee~a) = ~ m ( m - -  l ) . - . ( m - -  g + 1) 
"lt~ --rgl - -  1 / 2  I~°'m_~_k~_ i / 2  o -  

m E Z  

In terms of the fermionic fields (2.1.2), we find 

Oe~P +(a) ( z ) ~k_(a ) ( Z ) : Z ~( --tk+g(O/Ot)geaa)Z-k-t-I = : 
Z g kEZ 

(6.1.3) 

(6.1.4) 

6.2. 

purpose, we first calculate 

:(y - Z )lp+(a) ( y ) O - ( a )  ( z ): = (y  - Z )~b+(a) ( y ) ¢ - ( a )  ( z ) - 1 

= X a ( y , z )  - 1, 

where 

= ( Y )  '~°"~ ( ~ ' ~  a(k--~--~(y -k Z - k ) )  
z ,  exp 

exp ~ (y -k  . 

Then 

We will now express --tk+g(O/Ot)geaa in terms of the oscillators a~ a). For this 

1 Oe+IXa(y'z) y=z 
g + 1 Oy g+l " 

.0g~//+(a) ( Z ) / / / - -  (a) ( Z ) : ----- - -  
az t 

(6.2.1) 

(6.2.2) 

Notice that the right-hand-side of this formula is some normal ordered expression in the 
a~ a) 's. For some explicit formulas of (6.2.2), we refer to the appendix of [AV]. 

6.3. In the rest of  this section, we will show that/5 s has a subalgebra that will provide 
the extra constraints, the so called W-algebra constraints on r. 

From now on we assume that 7" is a r-function o f  the [ nl,  n2 . . . . .  ns ] th reduced KP 
hierarchy, which satisfies the string equation. So, we assume that (4.2.3) and (5.2.1) 
holds. Hence, for all t~ C supp ~- both 
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Q( ot) := Z L( a)n"c(a) ( ot) 
a=l 

N(ot) ~--'~ (1M(ot)L(ot)'-nac(a)(ot) n a -  
" ~  a: l  2~a  l'L(a)-ǹC(a)(a) } 

are differential operators. Thus, also N(a)PQ(ot)q is a differential operator, i.e., 

((a=~l lM(ol)L(ot) l-n" n2~aa'lL(ot)-n°)PL(ot)qn°c(a)(ot))_=O 

for p ,q  E Z+. 

Using (6.3.1),we are able to prove the following 

(6.3.1) 

Lemma 6.1. For all a E Q and p, q E Z+ 

Resz=o dz ~-~zqna \ha ( 1 Z(I_na)/2LZ( --na)/2]P ~ (V+(~,x,z) ) 
a=l 

X EaatV-(ot, x',z) = 0 .  (6.3.2) 

Proof. Using Taylor's formula we rewrite the fight-hand side of (6.3.2): 

Resz=odz~-~zqn,(1 0 P l-n~)/E--zO-na)/z~ (V+(a,x ,z)  )Eaa 
a=l ~a  Z ( Oz / 

xexp  2._,txk -- ~k , (,~,x,z). 
g=l k=l 

(6.3.3) 

Since 

OV-(a ,x , z )  
Ox~e) = - (P- (o t ,  x ,z)E~okp-(ot ,  x , z ) - l )+V-(ot ,  x , z ) ,  

it suffices to prove that for all m _> 0 
$ 

Resz=o dz ~ z °"° ( lzO-"°) /2Lz(I-"°) /2~P \na aZ ] (V+(ot'x'z)) 
a=l 

X Eaaamtv-(ot, X,Z) =0. 

Now, let 

~--~zqna (-~aZ(l--na)/2~zZ(l--n"/2)P (V+(ol, x,z) )eaa = ~-~ S,O-ieX'Z 
a=l i 

and V- (a, x, z ) = ~-~j TjO-Je -x'z, then (6.3.4) is equivalent to 

(6.3.4) 



J. van de Leur/Journal of Geometry and Physics 17 (1995) 95-124 115 

0=  Resz=0 dz ~-~ Siz-ieX'Z am( e-X'ZtTj(-z ) j)  
i,j 

m ( 7 )  = Resz=o dz ~ ~-'~(-1) m-e+j Sia£(tTj)z m-i-j-~" 
i,j e=O 

= ~ (-1)'+J(7)Siae(tzJ)" 
o<e<m 

i+j+~=m+ I 

(6.3.5) 

On the other hand (6.3.1) implies that 

o = s , o - '  ( - o  ) -J'r  ) _ 
i j 

= / ~ j  ( - -1 )J (  i : J ) s i a e ( t T j ) a - i - J - e ) - .  

~>0 

Now let i + j + ~ = m + 1; then we obtain that for every m > 0 

0= 0~<e (-1)y(-i;J)siae(tTj) 
i+j+~-=m+l 

= ~ (-1)*+J(7)SiOe(tzJ)' 
0 < ~ < m  

i+j+e=m+ 1 

which proves (6.3.5) [] 

Taking the ( i , j ) th  coefficient of (6.3.3) one obtains 

Corollary 6.2. For all ot E Q, 1 <_ i, j < s and p, q E Z+ one has 

Resz=o dz ~ z qna (Lz(l-na)/2Lz(l-na)/2) p (~+(a ) ( z ) )  
\ na aZ a=l 

X "/'a+8i-Sa ~ ~/--(a) (z)'rot+8o-Sj --0. (6.3.6) 

Notice that (6.3.6) can be rewritten as infinitely many generating series of Hirota 
bilinear equations (for the case p = q = 0 see [KV]). 

6.4. The following lemma gives a generalization of an identity of Date, Jimbo, Kashi- 
wara and Miwa [DJKM3] (see also [G]): 

Lemma 6.3. Let Xb(y, W) be given by (6.2.1); then 
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$ 

Resz=o dz ~ ¢+<a) (Z)Xb(y,  w) r,~+8,-~.e '~+~'-~" ® ~//-(a) ( Z )~',~+~.-~e '~+~'-~ 
a=l 

= (w - y)~k+(b)(y)'r,~+~_~,ea+~'-sb ®~b-Cb)(w),r,~,+,%_~e"+'%-'~. (6.4.1) 

Proof. The left-hand-side of (6.4.1) is equal to 

s z y .  8,,b 
Resz=o dz  ~ - ~ . ( ~ a , ~ i  "~ 8j)ZCSalS'+SD-2y<Sda+Si-8*)w -CSbla+'-8°) (~ZmYW) 

a=l 

xeX<~"Y-X~"w+x~"Zexp--~'~l(y-k--w-k)k=-I q-~Z a-~ka);7"a+8,-,°e 

® e -x~"~'z exp z ~ (a) "ra+8.-sJ ea-8"~" 
ox k 

Recall the bilinear identity for fl = a: 

$ 

Resz=o dz ~ ~p+(a) (z)  r~+8,-8oe '~+8'-8" ® ~/-(a) (z)7"~+8o-8je ~+8"-8i = 0. 
a=l 

Let Xb(y, W) ® 1 act on this identity; then 
$ 

Resz=o dz ~ ~ ( Sa, 8i + 8j) z (8"18~+8D -2y(Sda+8~) w-(sbla+8~) 
a=l 

\ W - - N I  

~--1 ax(a  ) ra+8~ - 8 .  e a+8~ 

® e -x''''z e x p / 2 - ,  ~ z -  ~ / r ' ~ + 8 " - 8 ' e ~ - '  = 0. 
\ ~ 1  k / 

Now, using this and the fact that 

y - z  = ( Y )  1 - Z / y  _ Y - W S ( w / z ) +  1 - y / z  
w - z  w 1 - Z / W  Z l ' w / z "  

where 8 ( w / z )  = ~-~.kez(W/Z) k (such that f ( w , z ) 8 ( w / z )  = f ( w , w ) 8 ( w / z ) ) ,  we 
obtain that the left-hand side of (6.4.1) is equal to 

( w - y) y( Sbl'~+8'-Sb) eX(~"'Y exp -- ~ -~ y a~,_b) I r,~+8,_si, e '~+s' 
k=l k / 
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® W--(Sbla+~b--SJ)e--X~b~'w 

exp ~w 0-~kb) ) "r,~+sb_,~j ea-  8J , 
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which is equal to the right-hand side of (6.4.1) [] 

Define Cb( g,p) as follows: 

P 

(z" .,z 
g=O 

(6.4.2) 

One also has 

P 

- -  l ( n b -- 1)L(  ot)-nb) p = Z cb( g ,p )  M (  ot)g L( ct)-nbP+t. ( M ( a ) L ( a )  --nb+l 2 

t=O 

(6.4.3) 

Then it is straightforward to show that 

cb(e,p) = ~_, [ ( q o + l ) ( 1 - - n b ) l  

0<_q0<ql..-<qe-e-t <--P-- 1 

x [(ql + ½)(1 - n b )  -- 1 1 ' ' - [ ( q p - t - 1  + ½)(1 -- rib) -- (p -- g--  1)1. 

(6.4.4) 

Now using (6.4.2) and removing the tensor product symbol in (6.3.6), where we write 
x and x t for the first and the second component, respectively, of the tensor product, one 
gets: 

Resz=0 dz ~s (1)P zqn. ~_~ OZ ~ 
a= l ~=0 

t,i. t × ~'ol~-Si--Sa(X)O--(a)(z) Ol~-Sa--~j(X ) = 0 .  

Using Lemma 6.3, this is equivalent to 

Resy=0 d y d z  ~-I +(a) (y) Z qnb 
z=0 a=l b=l 

P cb(e,p)  Z_.~p+ ~ Oe+~Xb(w,z) w=-~ 
g + 1 Oz e+l 

× 

~=0 

t .  ~ I .  I .  t _1  ,~ t _ a + 8 o - - 8  i ~ I × ~'a+Si-8°(x)ea+ai-8"~-(a)tY) a+8,-Sjt,~ )re ) =0.  

Now, recall (6.1.4) and (6.2.2), then 
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Resz =o dz ~ (~bl )Pzq., L Cb(~"P) ~ 1 ' O~'+lXb(w'z)814/+1 w=z 

b=l ~--'0 

s (1)Pzqnb ~ 09£~+(b)(z) ~ _ ( b ) ( z )  : 
= Resz=o dz ~-~ -~b Cb( & P ) Z--nbV+e : 

b=l ~=0 
a ~ 

= ~ - ~ ( L ~ P ~ - ~ C b ( ' , p ) r ( - - t ( q - p ) n b + ' ( " ~ )  ebb) 
b=l k n b /  

=-- ~ (~b)pp (t nbq (l(l--nb'/2L,(1--n')/2"~p- "~ ~l at" ) ebb) 

$ 

b=l 

= ~2"~r(t'~b--l)/2( -a~ (~bb))a " tO_n,)/2) e,,) 
b=-I 

where Ab = t nb 

d_ef w(P+l)  
- q-p • (6.4.5) 

Hence, (6.3.6) is equivalent to 

$ 
~"~#]l--Ffa){, ~w(p+ I ) Resy=0 dy z_~ ,. ~.r / q--p 
affil 

x 7"a+&-8o (x) e~+8'-8°~ -(a) (y)'ra+8o_Sj (x') (e ~+8°-8~ )' = O. (6.4.6) 

If  we ignore the cocycle term for a moment, then it is obvious from the sixth line 

of (6.4.5), that the elements W(q p+1) are the generators of  the W-algebra Wl+oo (the 
cocycle term, however, will be slightly different). Up to some modification of the 
elements W(o p+i), one gets the standard commutation relations of Wl+~, where c = nl. 

(i) v(i)l As the next step, we take in (6.4.6) x k =~k , f ° r a l l k E N ,  1 < i < s ; w e t h e n  
obtain 

( W(p+l)- ) 
(9 -q-P ' ~  = 0  i f i = j ,  

ax~ i) ra 

Ta+vi--oj "~ ° w(P+l)q-p "l'ot = 7"otW(qp;1)"l'ctq_Si_83 if i 4= j. (6.4.7) 

The last equation means that for all or, fl E supp ~" one has 

w(p+I) W(P+l) 
q_p 7"a - q_p 7"# (6.4.8) 

7"a r B 

Next we divide (6.4.6) by 1",~(x)¢~(x'), of course only for a E supp r, and use (6.4.8). 
Then for all or, fl E supp 7 and p, q E Z+ one has 
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-~ Z -k  0 q'-.p "TEtX) 
R e s z = 0  dz 

,... eXPa__l k=-I k Ox~ a) \ a'E(x) 

~1 -(a)  (Z)  tT"a+8o-Sj( X ! x ~b+(a)(z)Ta+O'-8"(X)ea+O'-Sa (ea+Sa-SJ) ' =0. 
) 

r . ( x )  

Since one also has the bilinear identity (3.3.3) (see also (2.4.1), (2.4.2)), we can 
subtract that part and thus obtain the following 

Lemma 6.4. For all or, fl E supp r and p, q E Z+ one has 

z -k 0 - 1 [ q-p r E t x )  
Resz=0 dz 

a=l 

(z)  ,~+8o-8j( ) (e'~+~°-sJ) ' 0. (6.4.9) × ~k+(a)(z)ra+8'-8, ,(X) ot+B,_8ol~ - ( a )  17" X I 
e = 

ra(X) (X') 

Define 

- 1 r B ~ x ) ~  Eaa. 
S(fl, p , q , x , z )  := exp - k Ox~ a) "I'E(X ) J 

a=l k=-I 

Notice that the first equation of (6.4.7) implies that 0 oS(fl, p, q, x, 0 ) = S(fl, p, q, x, 0 ) o 
0. Then viewing (6.4.9) as the ( i , j ) t h  entry of a matrix, (6.4.9) is equivalent to 

Resz=o dz P+ (a)R+(a)S( f l ,  p , q , x , a ) e  x'z t ( P - ( a ) ' R - ( o t ) '  e -x''z) = O. (6.4.10) 

Now using Lemma 3.1, one deduces 

(P+(a)R+(a)S ( f l ,  p , q , x , O ) R + ( a ) - I P + ( a ) - I ) _  =0;  (6.4.11) 

hence 

P+ ( a)S( f l ,  p ,q ,x ,O ) P+ ( a) -1 = ( P+ ( a)S( f l ,  p ,q ,x ,  tg ) P+ ( a ) - I  )_ = O. 

So S(fl, p, q, x, 0) = 0 and therefore 

Z -k  ¢~ I q'-'p "'I'EtX) 
exp - ox~a ) - 1  =0, \ rE(x) ,/ 

from which we conclude that 

W~P+I)rE = constant r E for all -- k < p > O. (6.4.12) 

In order to determine the constants on the right-hand side of (6.4.12) we calculate the 

Lie brackets, 

W(2 - 1  w(p+l) ] - - l ' k + p + l " k + l  j~ 'E=O,  (6.4.13) 

and thus obtain the main result 
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Theorem 6.5. The following two conditions for r E F <°) are equivalent: 
(1) r is a r-function of  the [hi,n2 . . . . .  ns]th reduced s-component KP hierarchy 

which satisfies the string Eq. (5.2.1). 
(2) For all p 3> O, k > - p :  

(W(k p+I) + 3~OCp)r = 0, (6.4.14) 

where 

C p -~ - -  

l~-~-~(na--2j-C1 - -  2 j  -1= 1 

-- l q - p  a=l j=l "2-~a ) ( h a  -2-naa 

1 ~-~( - -1~  p+I p ( n a + e ~  

2 p + 2  a=l \ '~'-a / ~ - ~ e e ! ~ , e + 2 / £ _ - 0  

× ~ [ ( q o + ½ ) ( n a - - l ) ]  
0<_q0<ql-'-<qe-~-i <--P-- 1 

× [ ( q l  -t- 1 ) ( h a  -- 1) q- 1] . -"  [(qp--e--I +" l ) ( n a  -- 1) q - p  - - e - -  1] 

$ ?1 a 

(6.4.15) 

s 2 For p = 0, 1, the constants Cp are equal to 0, respectively )-'~a=-I (na - 1 )/24na. 

Proof of  Theorem 6.5. The case (2) ~ (1) is trivial. For the implication (1) ~ (2),  
we only have to calculate the left-hand side of (6,4.13). It is obvious that this is equal 
to (W~k p+l) + Cp,k)rlj, where 

c,,k = ~, (w(_~) I 1 w(p+ l )~  
' k + p +  l " k + l  J "  

It is clear from (6.1.3) that cp,k -- 0 for k 4= 0. So from now on we assume that k -- 0 
and cp = Cp,o. Then 

= p--~+l 1~,( w<_~,~, w~ ~+'>) Cp 

_ - ,  : ( , o , (o>,) p q _ l ~ - " ~ ( 1 ) p + l / z  ½ ( 1 - - n a ) t - n : d - t - ° - ~ , ~ C a ( e , p ) t  n°+' --~ 
a=l na e=O 

- 2p +-----~ .._, , ~ )  }--~(--1)l+le "e! Ca(e,p), 

which equals (6.4.15). 
It is possible to find a shorter expression for cp, viz., if one writes 

w(P+I )  ~- ~ - " ~ ' "  q-P -~a t ( q - P ) n ° ( T q - ½ ( l - n a ) ) ( T +  l ( 1 - 3 n a ) ) " "  
a=l 

x ( T +  ½(1 - ( 2 p -  1)na))eaa, 
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where T = tO/Ot, then using results from [KRa] one finds that 

s no ( - 2 j + l ) ( n a - 2 j + l  1zsn° 
Cp = 1 + p a=l j=l 2na -2~a 

1)...("o-2j +1 [] 

7. A geometrical interpretation of the string equation on the Sato Grassmannian 

7.1. It is well-known that every r-function of the 1-component KP hierarchy corre- 

sponds to a point of the Sato Grassmannian Gr (see e.g. [S] ). Let H be the space of 

formal Laurent series ~ a n f  such that an = 0 for n >> 0. The points of Gr are those 
linear subspaces V C H for which the natural projection 7r+ of V into H+ = { ~  a n f  E 

H [ an = 0 for all n < 0} is a Fredholm operator. The big cell Gr ° of Gr consists of 
those V for which 7r+ is an isomorphism. 

The connection between Gr and the semi-infinite wedge space is made as follows. 

Iden t i fy  V_k_l/2 = t k. I~t  V be a point of Gr and w o ( t ) , w _ l ( t )  . . . .  be a basis of V; 

then we associate to V the following element in the semi-infinite wedge space: 

w o ( t  ) A W - l ( t )  A w _ 2 ( t )  A . . - .  

If  r is a r-function of the nth KdV hierarchy, then r corresponds to a point of Gr that 
satisfies tnV C V (see e.g. [SW, KS]) .  

In the case of the s-component KP hierarchy and its [hi,n2 . . . . .  n, ] -reduction we 

find it convenient to represent the Sato Grassmannian in a slightly different way. Let 

now H be the space of formal Laurent series ~ ant n such that an E C s and an = 0 for 

n >> 0. The points Gr are those linear subspaces V c H for which the projection 1r+ 
of V into H+ = {~--~ a n f  E H [ an = 0 for all n < 0} is a Fredholm operator. Again, the 

big cell Gr ° of Gr consists of  those V for which ~r+ is an isomorphism. The connection 
with the semi-infinite wedge space is of  course given in a similar way via (2. I. 1 ): 

(a) 
Unj_N _p+l/2 = Unaj_p+l/2 = t-naj+P-lea ' 

where ea, 1 < a < s, is an orthonormal basis of C s. 

It is obvious that r-functions of the [nl, n2 . . . . .  ns ] th reduced s-component KP hier- 
archy correspond to those subspaces V for which 

tn"Eaa V C V. (7 .1 .1 )  

k a=l / 

7.2. The proof that there exists a T-function of the [ n l ,  ll2 . . . .  ns ] th reduced KP hier- 
archy that satisfies the string equation is in great detail similar to the proof of Kac and 

Schwarz [KS] in the principal case, i.e., the nth KdV case. 
Recall the string equation L _ l r  = H _ l r  = 0. Now modify the origin by replacing 

xno+l by xno+l - 1 for all 1 < a < s. Then the string equation transforms to 
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( ~ L ~ n a + 1 0  ) a = - z  na Ox~ L - l - -  " -  - T a )  ';" = 0 ,  

or equivalently 

H_ l - 0 x ~ a  ) "/" --  0 .  

In terms of elements o f / 5  this is 

P( -A)7"= 0,  (7.2.1) 

where 

) A =  - -  ( n a + l ) t +  - - - l ( n a - 1 ) t - n "  Eaa. 
a=l  na at 

(7.2.2) 

Hence for V E Gr, this corresponds to 

AV c V. (7.2.3) 

Now we will prove that there exists a subspace V satisfying (7.1.1) and (7.2.3). We 
will first start by assuming that m -- nl = n2 . . . . .  ns (this is the case that L(a)  m is a 
differential operator). For this case we will show that there exists a unique point in the 
big cell Gr ° that satisfies both (7.1.1) and (7.2.3). So assume that V E Gr ° and that V 
satisfies these two conditions. Since the projection 7r+ on H+ is an isomorphism, there 
exist ¢~a E V, 1 < a < s, of the form qba = ea+Ei ,a  Ci,a t-i, with Ci,a = ESb=l c},°a)eb E C s. 
Now APqba = tPea+lower degree terms; hence these functions for p _> 0 and 1 < a < s 
form a basis of V. Therefore, tmq~a is a linear combination of APtkb; it is easy to observe 
that Amqba = constant tmq~a . Using this we find a recurrent relation for the c},ba )'s: 

• m - !  

( m  + 1) m-I ic},ba) Z c(b) " 
\ m / = dm i,e i--~(m+l),a' 

g=l 
(7.2.4) 

here the dm,i,l are coefficients depending on m, i, g, which can be calculated explicitly 
using (7.2.2). Since Co, a(b) = tab and t'-i,a-(b) = 0 for i < 0 one deduces from (7.2.4) that 

_(a) = 0 if i 4: (m + 1)k with k E Z. So the ~a for 1 < a < s c! b) = 0 if b ~ a, and t;i, a 1,12 

can be determined uniquely. More explicitly, all ~ba are of the form qba = t~(m)ea, with 

O O  

(b(m) = y ~  b~m) t-(m+l)i, (7.2.5) 

i=1 

where the bi do not depend on a and satisfy 

m q- 1 / m-1 m--1 L(m) 
- - - - -~ /  i ( m +  1)b} m) = Z dm,i,eoi_e. 

£=1 

Thus the space V E Gr ° is spanned by t~AtOa with 1 < a < s ,  k E Z+, 0 _< g < m. 
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Notice that in the case that all na = 1 we find that V = H+, meaning that the only 

solution of (7.1.1) and (7.2.3) in Gr ° is I" = constant e °, corresponding to the vacuum 

vector 10). 
If  not all na are the same, then it is obvious that there still is a V E Gr ° satisfying 

(7.1.1) and (7.2.3), viz., V spanned by tknaA~adp(n~)ea, with 1 < a < s, k E Z+, 

0 < ~a < na, where ~b (n°) is the unique solution determined by (7.2.5). However, at the 
present moment we do not know if this V E Gr ° is still unique in Gr °. 
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